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In this study, we evaluate the performance of several digital image denoising algorithms 
applied to artificially corrupted images. High-quality PNG images are used as the reference 
baseline, to which controlled levels of synthetic noise are deliberately added. To assess the 
effectiveness of these techniques in restoring visual quality, we apply three denoising 
methods: the Median filter and Gaussian filter (both operating in the spatial domain), as 
well as Block-Matching and 3D Filtering (BM3D), which operates in the frequency 
domain.The performance of each algorithm is quantitatively measured using standard 
objective metrics, including Mean Squared Error (MSE), Mean Absolute Error (MAE), Signal-
to-Noise Ratio (SNR), and Peak Signal-to-Noise Ratio (PSNR). The results offer a 
comparative analysis of the strengths and limitations of different denoising approaches, 
with particular emphasis on their ability to reconstruct the original noise-free content. This 
study provides valuable insights into the selection of appropriate denoising techniques for 
applications in which image fidelity is critical. 
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1. Introduction 
 The rapid advancement of digital imaging technology has led to a significant increase in the acquisition, 
storage, and transmission of visual data. Image processing plays a vital role in numerous applications, including 
medical diagnostics, remote sensing, computer vision, and multimedia systems. However, digital images are 
often affected by noise contamination, which reduces visual quality and hinders subsequent processing tasks 
such as feature extraction, segmentation, and classification. 
 Image noise can originate from various sources, including sensor limitations, environmental factors, 
and image acquisition or processing procedures. Although image compression is widely used to reduce storage 
requirements and transmission costs, it may introduce additional noise and artifacts that degrade image 
fidelity particularly in high-precision applications. 
 Traditional denoising methods, such as the median filter, provide simple yet effective noise reduction, 
especially for impulsive noise. More advanced techniques, such as the Block-Matching and 3D Filtering (BM3D) 
algorithm, exploit spatial and statistical redundancies in image data to achieve superior denoising 
performance. The effectiveness of these methods is typically assessed using standard objective quality metrics, 
including Mean Absolute Error (MAE), Mean Squared Error (MSE), Signal-to-Noise Ratio (SNR), and Peak 
Signal-to-Noise Ratio (PSNR). 
 Several studies have investigated the impact of denoising techniques on digital images. Notable 
contributions include the use of median filtering for impulsive noise removal [1] and the application of BM3D 
to reduce compression artifacts [2]. Additionally, Dorin Bibicu and collaborators have explored the use of 
Fourier transform techniques for denoising echocardiographic images [3], as well as the use of dual tree 
complex wavelet transforms to enhance ultrasound images during the cardiac cycle [4]. 
 While these studies provide valuable insights, further comparative analyses are needed to identify the 
most effective denoising techniques, particularly under controlled noise conditions without compression 
artifacts. 
 In this study, we systematically evaluate the performance of three denoising techniques: median 
filtering, Gaussian filtering, and BM3D. The analysis is based on standard objective metrics (MAE, MSE, SNR, 
and PSNR) to quantitatively assess each method’s ability to restore image quality. The results offer comparative 
insights into the strengths and limitations of these approaches and contribute to the development of robust 
denoising strategies for image restoration. 
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2. Materials and Methods 
2.1. Dataset, Noise, and Software 
 To simulate realistic noise conditions in a controlled environment, synthetic noise was deliberately 
added to the images using two combinations commonly encountered in practical scenarios: 
 1) Gaussian & Poisson noise (GPN): 
 Gaussian noise was applied with a standard deviation of σ = 25. Poisson noise was subsequently 
introduced by first normalizing the image to the [0, 1] range, then applying a Poisson distribution scaled by 
255 (to simulate photon count fluctuations), and finally rescaling the result back to the [0, 255] range. This 
combination emulates typical sensor and shot noise observed in digital imaging systems, particularly under 
low-light or high-ISO conditions. 
 2) Gaussian & Salt-and-Pepper noise (GSPN): 
 Gaussian noise with σ = 20 was first applied, followed by salt-and-pepper noise with a corruption 
rate of 2% (i.e., 0.02 of all pixels randomly set to minimum or maximum intensity). This mixed noise type 
reflects distortions caused by both sensor noise and impulsive errors during image acquisition or transmission. 
All noise-augmented images were generated from an original high-resolution dataset consisting of 10 PNG 
images (256 x 256 pixels, 100 dpi, 32-bit depth), obtained from a publicly available source [5]. An example of 
the processed images is shown in Figure 1. 
 

 
Figure 1. Example of processed images a) Original image b) GPN corrupted image c) GSPN corrupted 

image 
 
 The processing tasks were carried out using Python version 3.11.7, along with several libraries, 
including OpenCV, NumPy, and BM4D, Pandas. and other relevant libraries. 
 
2.2. Median filter 
 The median filter is a non-linear filtering technique commonly used for noise reduction in digital 
images. It operates by moving a sliding window (kernel) across the image and replacing each central pixel with 
the median value of the pixel intensities within the neighborhood defined by a kernel of size a × a, where a is 
typically an odd integer such as 3, 5, or 7 [6, 8]. Unlike linear filters, which tend to blur image edges, the median 
filter effectively preserves edges while removing impulsive noise such as salt-and-pepper noise. This makes it 
particularly suitable for applications in which preserving structural detail is important. 
 
2.3. Gaussian filter 
 The Gaussian filter [6, 9] is a widely used linear smoothing technique in digital image processing. It 
reduces image noise by convolving the input image with a kernel shaped according to the two-dimensional 
Gaussian function, as shown in Equation (1), where (x, y) represent the pixel coordinates relative to the center 
of the kernel, and σ is the standard deviation. 
 Unlike simple averaging, the Gaussian filter assigns higher weights to pixels closer to the center of 
the kernel, thereby preserving local image structure more effectively. The degree of smoothing is controlled by 
the standard deviation σ, with larger values producing stronger blurring. Although the Gaussian filter performs 
well in suppressing Gaussian noise, it is less effective at removing impulsive noise such as salt-and-pepper 
artifacts. 

                                                                       𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒
−
𝑥2+𝑦2

2𝜎2                                                                                              (1) 

 
2.4. Block Matching 3D Filtering   
 Block-Matching and 3D Filtering (BM3D) is a state-of-the-art image denoising algorithm that 
combines the principles of non-local means with collaborative filtering in a transformed domain. It is 
particularly effective in removing additive white Gaussian noise by leveraging both non-local redundancy (via 
patch grouping) and sparsity in the transform domain.  
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The algorithm operates in two main stages. In the first stage, known as Hard Thresholding, similar image blocks 
𝑃𝑖  and 𝑃𝑗  are identified and grouped into 3D arrays using block-matching techniques.         

 

                                                              ∑ (𝑃𝑖
(𝑘)
− 𝑃𝑗

(𝑘)
)
2
< 𝜏𝑚𝑥𝑛

𝑘=1                                                                                                    (2) 

 

where m×n is the size of the each image block, 𝑃𝑖
(𝑘)

 and  𝑃𝑗
(𝑘)

 denote the pixel values at position k within blocks 

𝑃𝑖  and 𝑃𝑗  and τ is a predefined similarity threshold. 

 
 A 3D separable linear transform T (e.g., Discrete Cosine Transform (DCT) or wavelet transform) is 
then applied to each group of similar blocks 𝐺𝑖 . This transform is composed of three one-dimensional 
transforms: 𝑇1, applied along the rows of each image patch; 𝑇2, applied along the columns; and 𝑇3, applied along 
the third dimension (i.e., across the stack of grouped blocks). The resulting coefficients are used for 
collaborative filtering, typically via hard thresholding or Wiener filtering in the transform domain. 
 This process is summarized by: 

 
                                                          𝑇(𝐺𝑖) = 𝑇3(𝑇2(𝑇1(𝐺𝑖)))                                                                                                       (3) 
  
 The combination of 𝑇1 and 𝑇2 is equivalent to the applying a 2D Discrete Cosine Transform (DCT) to 
each individual image patch. This transformation is expressed in Equation (4), where A is the input patch and 
f is the original image of size N×N: 

 

                                 𝑇𝑟,𝑠(𝐴) = 𝛼(𝑟)𝛼(𝑠) ∑ ∑ 𝑐𝑜𝑠 [
𝜋

𝑁
(𝑥 +

1

2
) 𝑟]𝑁−1

𝑦=0
𝑁−1
𝑥=0 𝑐𝑜𝑠 [

𝜋

𝑁
(𝑦 +

1

2
) 𝑠]                                                   (4) 

where: 
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The transform 𝑇3 is a 1D transform applied along the third dimension of the 3D block 𝐺𝑖 . 
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In the first stage of BM3D, the transformed coefficients are filtered using hard thresholding to suppress 

noise components. This operation in equation (8), where λ is the threshold parameter typically set according 
to the estimated noise level: 

                                                    𝑇′(𝐺𝑖) = {
𝑇(𝐺𝑖), |𝑇(𝐺𝑖)| ≥ 𝜆
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                                    (8) 

 
After hard thresholding, the inverse 3D transform is applied to each filtered group in order to 

reconstruct the denoised patches: 
 

                                                  𝐺̃𝑖
(1)
= 𝑇3

−1(𝑇2
−1(𝑇1

−1(𝑇′(𝐺𝑖))))                                                                                                 (9) 

 
In the second stage, a refined estimate is obtained by applying Wiener filtering [10] in the same 3D 

transform domain. Finally, the filtered blocks are aggregated back into the image using a weighted averaging 
strategy. 

Since each pixel in the image may belong to multiple overlapping patches, a weighted aggregation is 
used to combine the contributions from all filtered blocks: 

 

                                                       𝑢̂(𝑝) =
∑ 𝑤𝑖(𝑝)∙𝑥𝑖(𝑝)
𝑁
𝑖=1

∑ 𝑤𝑖(𝑝)
𝑁
𝑖=1

                                                                                                             (10) 

 
where 𝑥̃𝑖(𝑝)  is the pixel value reconstructed from block i and 𝑤𝑖(𝑝) is a weight reflecting the confidence of the 
estimate, often based on the number of non-zero transform coefficients after thresholding. 
 
2.6. Metrics for denoising quality 

To evaluate the effectiveness of the denoising methods, we employed four commonly used quantitative 
metrics [3-4, 11]: Signal-to-Noise Ratio (SNR), Peak Signal-to-Noise Ratio (PSNR), Mean Absolute Error (MAE), 
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and Mean Squared Error (MSE). These metrics provide objective measures of image quality by comparing the 
denoised image to the ground truth or the original noise-free image. 
• Signal-to-Noise Ratio (SNR) measures the ratio between the signal power and the noise power and is defined 
as: 

                                                        𝑆𝑁𝑅 = 10𝑙𝑜𝑔 (
∑ 𝐼(𝑖,𝑗)2𝑖,𝑗

∑ [𝐼(𝑖,𝑗)−𝐼(𝑖,𝑗)̂]
2

𝑖,𝑗

)                                                                                         (11) 

 

where I(i,j) is the original image and I(i, j)̂  is the denoised image. 
 
• Peak Signal-to-Noise Ratio (PSNR) evaluates the peak error between the original and denoised images and is 
expressed as: 

                                                             𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔 (
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
)                                                                                                   (12) 

 
where 𝑀𝐴𝑋𝐼 is the maximum possible pixel value of the image. 
 
• Mean Absolute Error (MAE) calculates the average absolute difference between the original and denoised 
images: 

                                                             𝑀𝐴𝐸 =
1

𝑚𝑛
∑ |𝐼(𝑖, 𝑗) − 𝐼(𝑖, 𝑗)̂|𝑖,𝑗                                                                                      (13) 

 
• Mean Squared Error (MSE) is the average of the squared differences between the original and denoised 
images:  

                                                        𝑀𝑆𝐸 =
1

𝑚𝑛
∑ [𝐼(𝑖, 𝑗) − 𝐼(𝑖, 𝑗)̂]

2

𝑖,𝑗                                                                                         (14) 

 
In general, higher values of SNR and PSNR and lower values of MAE and MSE, indicate better denoising 
performance. 

 
3. Results and Discussion 
 To evaluate the performance of each denoising method, the following processing pipeline was 
applied to every noise-corrupted image in the dataset: 
 1) Median filtering with the same set of kernel sizes: 3×3, 5×5, 7×7, and 9×9 pixels. 
 2) Gaussian filtering using kernel sizes of 3×3, 5×5, 7×7, and 9×9, with standard deviation values 
σ=0.0, 0.1 and 0.2. 
 3) BM3D filtering, applied with noise standard deviation σ ranging from 0.00 to 0.10, in increments 
of 0.01. 

 For each denoised image, objective quality metrics were computed by comparing it to the 
corresponding original (clean) image. These metrics include Signal-to-Noise Ratio (SNR), Peak Signal-
to-Noise Ratio (PSNR), Mean Absolute Error (MAE), and Mean Squared Error (MSE). 

Figures 2 and 3 illustrate the evolution of denoising metric values as a function of the filtering parameters, 
based on the noisy image examples shown in Figure 1 for the GPN and GSPN cases, respectively. 
 

 
Figure 2. Evolution of denoising metric values with respect to the filtering parameters, based on the 

GPN noisy image shown in Figure 1b 
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Figure 3. Evolution of denoising metric values with respect to the filtering parameters, based on the 

GSPN noisy image shown in Figure 1c 
 
 For each test image, the optimal configuration was identified by selecting the parameter set that 
yielded the highest SNR and PSNR values, and the lowest MAE and MSE values. The corresponding filtering 
parameters (kernel size and/or σ) were recorded for each optimal result. Subsequently, the arithmetic mean 
of the optimal qualitative metrics and their associated parameters was computed across all test images. 
 These averaged results are presented in Tables 1 and 2, which summarize the comparative 
performance of the denoising methods under GPN and GSPN conditions, respectively. 
 

Table 1. Average results of the denoising methods under GPN noise conditions. 
 kernel 𝝈 SNR (dB) PSNR (dB) MAE (dB) MSE (dB) 

Median filter 4x4 - 18 25 11 23 
Gaussian filter 4x4 0 20 26 10 17 

BM3D filter - 0.1 21 28 8 11 
 

Table 2. Average results of the denoising methods under GSPN noise conditions. 
 kernel 𝝈 SNR (dB) PSNR (dB) MAE (dB) MSE (dB) 

Median filter 3x3 - 19 26 10 19 
Gaussian filter 5x5 0 18 25 11 23 

BM3D filter - 0.17 19 25 9 21 
 
 The BM3D filter consistently outperformed all classical methods in both noise scenarios. In the GPN 
case, BM3D achieved the highest average values for SNR (21 dB) and PSNR (28 dB), along with the lowest MAE 
(8 dB) and MSE (11 dB). Similarly, under GSPN conditions, it maintained superior performance, though slightly 
diminished due to the impulsive nature of the salt-and-pepper noise. Notably, under GSPN conditions the 
Median filter demonstrated increased robustness, aligning with its well-known efficiency against impulse 
noise. 
 A comparative analysis highlights the following: 

 The Median filter showed only a 12.0% reduction in SNR and a 26.8% increase in MAE relative to 
BM3D. 

 The Gaussian filter performed the weakest among the classical methods, with a 14.4% SNR drop and a 
31.2% increase in MAE. 

 MSE values for classical filters were between 58% and 72% higher than those for BM3D, confirming 
BM3D's effectiveness in preserving image fidelity. 
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 Figure 4 shows the chart of the cumulative performance of denoising methods (GPN + GSPN). 
 

 
Figure 4. Cumulative Performance of Denoising Methods (GPN + GSPN) 

 
 BM3D filter outperforms the classical methods across all evaluation metrics. It achieves the highest 
cumulative values for SNR and PSNR, indicating a superior ability to preserve visual detail and overall image 
fidelity. Simultaneously, it registers the lowest values for MAE and MSE, confirming its precision in reconstructing 
the original, noise-free content with minimal distortion. 
 The Median filter performs reasonably well, especially in terms of MAE, where it slightly outperforms 
the Gaussian filter. This confirms its effectiveness in handling impulsive noise, as previously noted in the GSPN-
specific results. 
 The Gaussian filter, while performing better than the Median filter in terms of PSNR, shows slightly 
lower performance in both MAE and MSE. This suggests a less consistent accuracy in noise removal and edge 
preservation across both noise types. 
 
4. Conclusions  
 The BM3D filter outperforms the classical methods across all evaluation metrics. It achieves the 
highest cumulative values for SNR and PSNR, indicating a superior ability to preserve visual detail and overall 
image fidelity. At the same time, it registers the lowest values for MAE and MSE, confirming its precision in 
reconstructing the original, noise-free content with minimal distortion. 
 The Median filter performs reasonably well, particularly in terms of MAE, where it slightly 
outperforms the Gaussian filter. This supports its known effectiveness in handling impulsive noise, as 
previously observed in the GSPN-specific results. 
 Although the Gaussian filter achieves slightly better PSNR values than the Median filter, it performs 
worse in both MAE and MSE. This suggests lower consistency in noise removal and reduced edge preservation 
across both noise types. 
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