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In the current context of the rapid development of sensor-based software systems, 
economic decision-making has become essential for optimizing resources and reducing 
operational costs. This paper analyzes the applicability of AI-based predictive methods in 
supporting the economic decision-making process in sensor-based software systems. Using 
machine learning models, resource consumption can be forecasted, operational costs can 
be estimated, and system performance can be evaluated under different conditions. The 
main objective of the research is to facilitate informed decision-making regarding the 
configuration, scaling, and maintenance of software systems that manage sensor networks, 
in order to achieve increased economic efficiency. This study refers to a theoretical analysis 
which details the methodological principles, but also the design rationale underlying 
predictive AI models applied in economic decision-making. The research results highlight 
the benefits of applying AI to anticipate system behavior and reduce costs associated with 
overprovisioning, excessive energy consumption, or reactive maintenance. The conclusions 
of the paper highlight the real potential of artificial intelligence in transforming sensor-
based software systems into more economically sustainable infrastructures, while 
providing a valuable tool for decision-makers in industrial, urban or research contexts. 
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1. Introduction 
  Sensor-based software systems are now essential parts of contemporary technology infrastructures, 
supporting a broad range of applications in industries like manufacturing, energy, healthcare, agriculture, and 
urban management (Gubbi et al., 2013; Zanella et al., 2014). High-frequency data streams produced by these 
systems' constant physical environment monitoring help to guide operational plans and control systems. The 
integration of economically informed decision-making into these systems is still limited, despite the fact that 
their data acquisition and system automation capabilities have greatly improved (Gupta et al., 2021). 
Conventional sensor systems frequently depend on reactive logic or static decision rules, which may not 
sufficiently take cost-benefit trade-offs, resource limitations, or changing environmental conditions into 
account (Banafa, 2016).  
  This disparity is a serious problem, especially in situations where economic viability and operational 
efficiency are crucial. Intelligent decision-making frameworks that can maximize results from both a technical 
and financial point of view are becoming more and more necessary as sensor data volume and velocity rise.  
Promising approaches to meeting this need are provided by recent advancements in AI, especially in predictive 
analytics. Systems can predict future states, assess possible scenarios, and take proactive decisions in the face 
of uncertainty thanks to predictive AI techniques like reinforcement learning, time-series analysis, and 
machine learning-based forecasting (Jordan & Mitchell, 2015; Goodfellow et al., 2016). By anticipating system 
behaviors, preventing expensive failures, and allocating scarce resources as efficiently as possible, these 
methods, when combined with sensor software systems, can support economically optimal actions (Zhang et 
al., 2020). 
  This study explores how predictive AI can improve sensor software systems' ability to make 
economically sound decisions. To increase the effectiveness and financial performance of such systems, we 
suggest a systematic framework that integrates data-driven prediction, optimization, and decision support. We 
seek to clarify how predictive AI can turn sensor systems into intelligent agents with the capacity for 
autonomous, economically rational behavior by reviewing pertinent literature, technical approaches, and real-
world use cases. 
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  The three main goals of this study are to close the identified gap in economically informed decision-
making in sensor software systems: 
  O1: To develop and suggest a conceptual framework that combines sensor software systems and 
predictive artificial intelligence (AI) techniques to facilitate real-time, cost-effective decision-making. 
  O2: To assess how well predictive models, including machine learning, time-series forecasting, and 
reinforcement learning, optimize resource allocation, lower operating costs, and improve sensor-driven 
environment performance. 
  O3: To demonstrate the economic and technical feasibility of the suggested framework by validating 
its practical applicability through case studies or simulation-based analyses in important domains, such as 
precision agriculture, energy systems, and smart manufacturing. 
  A critical evaluation of previous research on AI-assisted economic decision-making in sensor systems 
is necessary to bolster the methodological approach and pinpoint current research avenues. In order to create 
a comprehensive viewpoint on the subject being studied, the subsequent section examines pertinent literature 
from related disciplines, including artificial intelligence, sensor software systems, and economic decision-
making. 
 
2. Literature review 
  Sensor software systems, often at the core of the IoT, are designed to collect, process, and distribute 
data collected from the physical world (Gubbi et al., 2013; Zanella et al., 2014). In industries like manufacturing, 
healthcare, smart cities, and environmental monitoring, these systems are crucial. Sensor systems can be built 
to operate on edge, fog, or cloud computing platforms, with trade-offs between computational capacity, energy 
efficiency, and latency (Shi et al., 2016). The decision-making processes of these systems are often static or 
reactive and lack adaptive economic reasoning, despite advancements in networked intelligence and sensor 
integration (Gupta et al., 2021). 
  The methodical assessment of trade-offs to attain the best results while keeping cost, risk, and utility 
constraints in mind is known as economic decision-making (Simon, 1983). This frequently entails striking a 
balance between resource allocation, energy consumption, and maintenance expenses in the context of 
intelligent systems. Conventional methods use heuristic or rule-based models, which are inadequate in 
dynamic, data-rich settings (Banafa, 2016). To overcome these constraints, a growing corpus of research is 
promoting the incorporation of computational intelligence, particularly in smart infrastructure and cyber-
physical systems (Zhang et al., 2020). 
  In order to predict events and modify system behaviors in real time, predictive AI techniques like 
machine learning (ML), deep learning, and reinforcement learning have become increasingly popular in recent 
years (Jordan & Mitchell, 2015; Goodfellow et al., 2016). In sensor-rich environments where past trends can be 
used to predict equipment failure, demand spikes, or environmental changes, time-series forecasting is 
especially useful. The potential of reinforcement learning to learn optimal policies through interaction with the 
environment has been investigated. It provides dynamic control strategies that optimize for long-term rewards, 
such as economic metrics (Sutton & Barto, 2018). 
  Numerous studies have shown how well predictive analytics and economic optimization work 
together. To minimize downtime and lower lifecycle costs in industrial systems, for example, predictive 
maintenance models have been used (Lee et al., 2014). Similarly, forecasts are used by AI-based energy 
management systems to lower operating costs in smart grids (Mohammadi et al., 2020). Nevertheless, there is 
still a lack of a well-developed framework that specifically addresses economic decision-making in sensor 
software systems that use predictive AI. A unified strategy to integrate economic models, predictive algorithms, 
and real-time sensor data processing is lacking in existing research, which frequently addresses these aspects 
separately. 
  There is little interdisciplinary work that connects AI prediction, economic theory, and software 
system architecture, despite the literature providing strong foundations in predictive modeling and sensor 
network design. Without methodically integrating economic goals into the decision-making process, the 
majority of current implementations place an emphasis on either technical efficiency or predictive accuracy. 
This disparity emphasizes the need for an all-encompassing framework that uses predictive AI technologies to 
enable economically sound decisions in real-time within sensor-driven environments. 
 
 Table 1. Structured review of scholarly contributions on predictive artificial intelligence in 
economic optimization of sensor software systems 

Reference Purpose Subjects Sample Design Conclusion 

Gubbi et al. 
(2013) 

Overview of IoT 
architecture and 
future directions 

IoT systems and 
architectures 

Conceptual 
framework 

Highlighted the core 
role of sensor software 

systems in IoT 
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Reference Purpose Subjects Sample Design Conclusion 

Zanella et al. 
(2014) 

Discuss IoT 
applications in smart 

cities 

Smart city 
sensor systems 

Survey of 
deployments and 

architecture 

Confirmed the 
centrality of sensor 

networks in urban IoT 

Shi et al. 
(2016) 

Explore edge 
computing for sensor 

systems 

Edge vs. cloud 
computing 

Comparative 
architectural 

analysis 

Defined trade-offs in 
latency, energy, and 

computation 

Gupta et al. 
(2021) 

Review smart sensing 
architectures and 

challenges 

Sensor 
architecture 
and design 

Taxonomic 
literature review 

Emphasized lack of 
adaptive economic 

decision-making 

Simon (1983) 
Introduce economic 
decision-making in 

human systems 
Decision theory 

Conceptual 
framework 

Stressed rational 
trade-offs in uncertain 

environments 
Jordan & 
Mitchell 
(2015) 

Survey machine 
learning trends and 

applications 

ML 
methodologies 

Review 
ML applicable for 
predictive sensor 
decision-making 

Goodfellow 
et al. (2016) 

Comprehensive 
introduction to deep 

learning 

Deep learning 
models 

Textbook 
DL offers potential for 
predictive accuracy in 

sensors 

Lee et al. 
(2014) 

Propose CPS for 
Industry 4.0 

Smart 
manufacturing 

Architecture 
proposal 

Reinforced sensor 
integration in 

predictive frameworks 

Mohammadi 
et al. (2020) 

Use DRL for smart 
city services 

IoT, DRL in 
cities 

Implementation 
case 

DRL enables cost-
effective sensor-based 

control 

Zhang et al. 
(2020) 

Review predictive 
maintenance using 

data-driven methods 

Predictive 
maintenance 

Survey 
Economic 

optimization with 
predictive models 

Source: authors 

  
  Recently, the specialized literature, as we can see from the analysis of Table 1, has highlighted the rapid 
evolution of software sensors within cyber-physical systems, with a particular focus on their implementation 
in industrial, urban and energy environments. The integration of predictive artificial intelligence into these 
systems has enabled the transition from passive monitoring to proactive, data-driven decision-making. 
Fundamental studies (Gubbi et al., 2013; Shi et al., 2016; Jordan & Mitchell, 2015) have documented the 
advantages of adopting edge/fog/cloud architectures, highlighting the critical role of smart sensors in both 
early anomaly detection and resource optimization and increasing operational resilience. In parallel, there has 
been a growing concern about integrating economic criteria into decision-making algorithms, in an ongoing 
effort to reduce maintenance costs, energy consumption, and operational risks (Simon, 1983; Lee et al., 2014; 
Mohammadi et al., 2020). 
  However, the analysis of the specialized literature highlights a lack of convergence between AI-based 
predictive models and rigorous economic decision-making formalism. Most works in the field treat the 
technical components (prediction accuracy, computational architectures) and the economic ones (costs, utility) 
separately, without integrating them into a unified framework. This gap justifies the need for a conceptual and 
application framework that combines AI algorithms (including reinforcement learning and deep learning) with 
real-time economic optimization models. 
  Thus, our article proposes an innovative direction by exploring the potential of predictive software 
sensors as active factors in autonomous economic decision-making, thus responding to a real need for 
sustainable efficiency in the IoT and Industry 4.0 era. 
  
3. Conceptual framework for economic decision-making in sensor software systems 

 
Based on the previous conceptual framework, which identified the main components involved in AI-

assisted economic decision-making in sensor-based software systems, it is necessary to delve deeper into how 
these concepts can be formalized and operationalized in intelligent systems. In this section, we will detail the 
decision-making models used in autonomous technological environments, highlighting the role of economic 
decision theory in optimizing the performance of these systems. The emphasis will be on integrating the 
principles of utility maximization, efficient resource allocation and cost-benefit analysis, in correlation with 
modern predictive methods. 
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3.1. Economic decision modeling in intelligent systems 
  Modeling economic decision-making in intelligent systems is an essential step in designing 
autonomous solutions that must function efficiently under dynamic and often uncertain conditions. At its core, 
economic decision theory is based on principles such as utility maximization, resource optimization, and cost-
benefit analysis, which were originally defined in the classic works of Herbert Simon (1983), who introduced 
the concept of bounded rationality in decision-making: economic agents do not make perfect decisions, but 
“good enough” for the available information and temporal context (Simon, 1983). 
  Thus, as we can see from the specialized literature, in modern intelligent systems based on software 
sensors, these concepts acquire a technological valence. This is because utility maximization translates into 
both increased operational efficiency and minimized energy consumption or reduced maintenance costs. All of 
this is integrated into a data-driven decision-making framework. It is thus concluded that autonomous systems 
must be able to make decisions quickly and adaptively, and this adaptability is directly influenced by their 
ability to assess the economic consequences of actions in uncertain and variable environments. 
  Recent studies emphasize that decision-making under conditions of uncertainty, such as those 
encountered in industrial or urban environments, requires the integration of predictive models with economic 
approaches, in a hybrid and contextual manner. According to Koulouriotis and Diakoulaki (2020), in cyber-
physical systems, decision-making must include direct economic indicators (operating costs, yields, 
amortization time), but also indirect ones (energy impact, predictive maintenance), managed by intelligent 
algorithms (Guimarães, Nagano & Silva, 2020). 
  Also, from an applied perspective, Sun et al. (2021) demonstrate that integrating economic decisions 
in autonomous sensor systems with reinforcement learning algorithms allows not only to optimize immediate 
costs, but also to allocate resources based on long-term economic forecasts, which leads to improved 
sustainability of the software infrastructure (Chaudhuri & Sahu, 2022). 
  Thus, modeling economic decisions in intelligent systems involves not only implementing algorithms 
that optimize technical parameters, but also integrating robust economic principles that give the software 
agent the ability to act rationally, given resource constraints and the long-term goals of the system. In predictive 
software sensors, this means the ability to estimate not only the future values of a variable (e.g. temperature, 
wear), but also the economic impact of these estimates in order to make the optimal decision (e.g. postponing 
a repair, adjusting energy consumption, reallocating tasks). 
 
3.2. Integrative conceptual architecture for economic decision-making based on software sensors and 
predictive AI models 
  To support real-time economic decision-making in sensor-based software systems, we propose a 
conceptual architecture that integrates data collection from physical sensors, intelligent data processing 
through predictive AI models, and economically oriented decision-making components. This architecture is 
aligned with the Industry 4.0 paradigm and assumes a bidirectional flow of information between the physical 
and cyber layers. 
  Software sensors function as virtual entities that, through statistical models or machine learning 
algorithms, estimate critical variables that are difficult to measure directly. Raw data from physical sensors 
(e.g. temperature, pressure, vibration) is transmitted to the processing infrastructure, which can be 
implemented at the edge, fog, or cloud level, depending on the latency, security, and computational capacity 
requirements.  
  Edge computing architecture allows for fast and local response, which is essential for applications with 
strict time constraints, such as those in energy or industrial production. Fog computing provides an 
intermediate interface for distributed aggregation and analysis, while cloud computing provides scalability and 
advanced storage and machine learning capabilities. As Shi et al. (2016) show, this edge–fog–cloud hierarchy 
allows for an optimal balance between resource consumption and system performance in dynamic industrial 
contexts. 
  At the heart of the proposed architecture is the economic decision-making component, which analyzes 
estimates from predictive models (e.g., recurrent neural networks or reinforcement learning algorithms) and 
generates decisions regarding resource allocation, preventive maintenance, or system configuration 
adaptation. This approach allows not only to reduce operational costs, but also to increase the resilience and 
adaptability of the system in the face of uncertainty and contextual changes.  
  Thus, the proposed architecture provides a coherent framework for integrating artificial intelligence 
and economic decision-making into sensory software systems, contributing to the development of intelligent, 
economically efficient and sustainable infrastructures. 
  The importance of an integrative conceptual architecture that combines software sensors and 
predictive AI models in the context of economic decision-making is essential for transforming traditional 
technological systems into intelligent, autonomous and economically efficient infrastructures. This framework 
is valuable for real-time data correlation with economic decisions. By integrating sensor data sources with AI 
models, the system becomes able to analyze operational dynamics in real time and make decisions based on 
economic forecasts we can reduce risks and optimize costs. 
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  It also enables maximizing decisional value through intelligent processing. In such an architectural 
framework, raw data is transformed into contextual and economically relevant information through 
edge/fog/cloud processing (Shi et al., 2016). This supports autonomous decisions that balance utility, cost and 
resources. 
  We can also talk about the importance of flexibility and scalability for different domains. This is 
because the proposed architecture is applicable to industries such as energy, agriculture, transport or smart 
cities, providing an adaptable and modular framework for the economic integration of software sensors. 
  It can also provide Decision Support in uncertainty. It is known that predictive models allow systems 
to evaluate future scenarios, anticipating demands, wear, energy consumption or failures. These aspects are 
fundamental for sustainable economic efficiency in autonomous systems. 
  A final highlight of its importance is given by the fact that this conceptual architecture serves as a 
foundation for the development of cyber-physical systems. It not only collects and processes data, but also acts 
intelligently according to well-defined economic criteria, representing an essential step towards automation 
with integrated economic value. 
 
3.3. Methodological challenges and limitations  
  The development and implementation of economic decisions in intelligent systems based on software 
sensors and predictive AI models raises a number of significant methodological challenges and technical 
limitations. One of the main problems is the lack of transparency of the artificial intelligence algorithms used 
in decision-making processes, especially in the case of “deep learning” models. These models, although 
performing well in prediction, are often perceived as “black boxes”, which limit the explainability and 
acceptance of automated decisions in critical economic contexts (Zhang et al., 2020). 
  Another challenge is the economic calibration of decisions generated by autonomous systems. The 
integration of economic constraints, such as maintenance costs, resource consumption or penalties for 
downtime, requires hybrid models that combine algorithmic inference with explicit economic rules. In the 
absence of a standardized framework for modeling these aspects, many implementations rely on ad-hoc 
heuristics, with results that are difficult to generalize (Banafa, 2016). 
  Also, the complexity and size of AI models involved in prediction contribute to high energy 
consumption, which is essential in edge or embedded applications. The limited resources of edge computing 
infrastructures impose restrictions on the implementation of large models, and strategies to reduce algorithmic 
complexity through compression or pruning are still maturing (Shi et al., 2016). 
  Another critical aspect is related to the adaptability of predictive algorithms under dynamic and 
uncertain conditions. Most AI models, especially those based on deep learning, assume stable training 
conditions and fully labeled data sets. In reality, cyber-physical systems operate in constantly changing 
environments, where data may be incomplete, noisy, or unstructured, and distributions may change over time 
(a phenomenon known as “concept drift”). This phenomenon affects the accuracy of predictions and the 
reliability of economic decisions generated by the system. Also, the economic models used must be constantly 
recalibrated to remain relevant, which implies a considerable maintenance effort and domain expertise (Zhang 
et al., 2020). 
  In addition, the scalability of the proposed architectures represents a significant challenge in an 
industrial context. Integrating software sensors with edge-fog-cloud infrastructures requires a careful balance 
between latency, energy consumption and processing capacity. High-performance AI models can quickly 
become inefficient in environments with strict energy or hardware resource constraints (Shi et al., 2016). 
Moreover, as the complexity of the architectures increases, the difficulty of explicitly correlating the raw data 
collected, the applied AI models and the economic impact of the generated decisions arises. Thus, the lack of 
decision traceability and the difficulty of algorithm interpretability (the so-called "black box" of neural 
networks) make it difficult to validate automated economic decisions in front of the human actors involved 
(Banafa, 2016). 
  These limitations highlight the need for balanced approaches that prioritize both the performance of 
predictions and their sustainability and interpretability in an economic decision-making context. 
 
4. Conclusions  
  This paper investigated the importance of integrating economic decision-making into sensor-based 
software systems, using predictive artificial intelligence techniques. In a dynamic industrial context, marked 
by advanced automation and large volumes of data, economically informed decision-making becomes essential 
for optimizing resources, reducing operational costs and increasing overall efficiency. Theoretical analysis and 
literature review highlighted the need for a conceptual architecture that combines data acquisition, AI 
prediction and economic decision-making mechanisms in a coherent and scalable framework. 
  The importance of the topic is all the greater as modern cyber-physical systems require not only 
automation, but also decision-making autonomy with economic reasoning. AI technologies can transform 
software sensors from simple measurement tools into intelligent agents capable of anticipating behaviors, 
efficiently allocating resources and maximizing the economic value of controlled processes. This opens up new 
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directions in the design of sustainable infrastructures, especially in industries where energy efficiency, 
predictive maintenance and real-time adaptability are critical. 
  Finally, future research will be based on the analysis and follow-up of the implications of integrating 
explicit economic models into machine learning algorithms. It can also be considered to develop validation 
scenarios in real industrial contexts and to address the challenges related to transparency, algorithmic ethics 
and energy consumption. Only through an interdisciplinary and rigorous approach can the proposed topic 
reach its full potential in the sustainable digital transformation of industry. 
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