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1. Introduction

Among the best known trading rules is the one based on the old saying ,Sell in May and go away”. For
the European financial press, this proverb is continued with the advice that investors should buy back in
September or, in a more precise version, on St. Leger Day (apud Bouman & Jacobsen, 2002). The reason of this
recommendation is the decline of stock returns that usually occurs between May and September. For the United
States (US) capital market, O'Higgins & Downes (1990) considered that a bear market started in October 31
and it ended in April 30.

An investigation of Bouman & Jacobsen (2002) on the stock markets from 37 countries identified, for
36 of them, the “Sell in May (Halloween)” Effect (a form of seasonality consisting in returns that were
significantly lower during the May - October time interval than during the remainder of the year). In their
opinion, this calendar anomaly is persistent in time. Other studies documented the presence of the “Sell in
May” Effect for different periods and several periods (Jacobsen et al.,, 2005; Jacobsen & Visaltanachoti, 2009;
Haggard & Witte, 2010; Swagerman & Novakovic, 2010; Andrade et al.,, 2013; Kochman & Bray, 2017;
Degenhardt & Auer, 2018; Zhang & Jacobsen, 2021; Jain, 2023). There are, however, papers that contested the
Sell in May Effect or that considered that form of seasonality weakened after it had been revealed (Maberly &
Pierce, 2004; Lucey & Zhao, 2008; Dichtl & Drobetz 2015; Fuller et al,, 2017).

The knowledge about the high returns from the time interval November - April could be exploited in a
market timing investment strategy (Halloween strategy) which consists in purchasing stocks in November or
in the following months and selling them in April or May (Bouman & Jacobsen, 2002; Swinkels & Van Vliet,
2012; Carrazedo et al,, 2016; Lloyd et al., 2017; Kenourgios & Samios, 2021; Polat, 2022). Such transactions
could generate abnormal returns on the stock markets.

This paper approaches the impact of purchase transactions, associated to the Halloween strategies, on
the US capital market. We could consider that most of such transactions are made in the first part of November.
A previous investigation identified abnormal high returns in a time interval from 15t to 8% November during
two periods: January 2007 - December 2014 and January 2015 - December 2023 (Stefanescu & Dumitriu,
2024). We took into consideration two time intervals: the first one from 1st to 9t November and the second
one from 4t to 9th November. Our investigation covers three periods:

- arelative quiet period, from January 1995 to December 2006;
- aquite turbulent period, from January 2007 to December 2015, when the Global Financial Crisis, the

Big Recession and the European Debt Crisis generated pessimism among investors;

- the third period, from January 2016 to December 2024, when several events (COVID-19 pandemic, the
unconventional monetary policies, Russian invasion of Ukraine, global energy crisis, the 2023 Hamas-
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led attack on Israel, the 2024 US presidential election, etc.) caused complex evolutions of the financial

markets.

The rest of this paper is organized as it follows: the second part provides a description of data and
methodology employed to investigate the presence of abnormal returns during the two time intervals, the third
part presents the empirical results, and the fourth part concludes.

3. Data and methodology
3.1.Data Description

The data used in this investigation, about the impact of the Halloween strategies on US capital market,
consisted in the daily closing values of four major indexes: Standard & Poor's 500 (S&P 500), Dow Jones
Industrial Average (DJIA), NASDAQ Composite (NASDAQ) and Russell 2000. Those values, which were
provided by Yahoo! Finance, covered the three periods mentioned before. For each index we established a daily
series of log returns computed by the formula:

r,. =[n(P,,) — (P, ;)] x100 1)
in which Pjtand Pjt1are the closing prices of the index j from the days t and t-1, respectively.

The Table 1 reports the descriptive statistics of returns. For all four indexes, the lowest averages
occurred in the period January 2007 - December 2015. The second and third periods were characterized by a

high volatility. The values of Jarque-Bera tests suggest that returns of the four indexes didn’t follow a normal
distribution.

Table 1. Descriptive statistics of the returns

Index | S&P 500 | DJIA | NASDAQ | Russell 2000
First subsample: January 1995 - December 2006

Mean 0.037 0.039 0.039 0.038
Median 0.061 0.051 0.132 0.107
Minimum -7.113 -7.454 -10.168 -7.533
Maximum 5.574 6.155 13.255 5.678
Std. Dev. 1.079 1.054 1.704 1.188
1Q range 1.133 1.114 1.626 1.288
Jarque-Bera test 1603.5%** 2588.7*** 2599.8*** 603.5%**
Second subsample: January 2007 - December 2015

Mean 0.016 0.015 0.032 0.016
Median 0.069 0.050 0.100 0.097
Minimum -9.470 -8.201 -9.588 -12.614
Maximum 10.957 10.508 11.159 8.861
Std. Dev. 1.364 1.249 1.439 1.717
1Q range 1.091 1.017 1.270 1.658
Jarque-Bera test 8581.4*** 8585.0*** 4400.7*** 2575.3***
Third subsample: January 2016 - December 2024

Mean 0.047 0.039 0.060 0.030
Median 0.071 0.073 0.111 0.082
Minimum -12.765 -13.842 -13.149 -15.399
Maximum 8.968 10.764 8.935 8.976
Std. Dev. 1.142 1.123 1.377 1.489
1Q range 0.942 0.906 1.274 1.538
Jarque-Bera test 25729.6*** 54099.3*** 6345.6*** 12075.7***

Note: *** means significant at 0.01 level.

We investigate the stationarity of returns by employing two variants of the Augmented Dickey - Fuller unit root tests: with and without
constant (Dickey & Fuller, 1979; Dickey & Fuller, 1981). For all four indexes and for all three sub-samples the null hypothesis of unit root
was rejected (Table 2).

Table 2. Results of ADF tests

Index Test without constant Test with constant
Number of lags I Test statistic Number of lags I Test statistic
First subsample: January 1995 - December 2006
S&P 500 11 -16.046*** 11 -16.194***
DJIA 8 -18.859*** 12 -18.997***
NASDAQ 12 -13.612%** 12 -13.660***
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Russell

2000 15 -12.734%** 15 -12.837***
Second subsample: January 2007 - December 2015

S&P 500 11 -13.654*** 11 -13.669***
DJIA 12 -12.714%** 12 -12.729%**
NASDAQ 16 -11.112%** 16 -11.175%**
Russell ok ok
2000 11 -13.395 11 -13.403
Third subsample: January 2016 - October 2024

S&P 500 8 -14.744*** 8 -14.914***
DJIA 8 -14.833*** 8 -14.954***
NASDAQ 11 -13.372%** 11 -13.608***
Russell

2000 11 -13.1771%** 11 -13.2271%**

Notes: The optimum number of lags was identified by Akaike (1974) Information Criterion;
*** means significant at 0.01 level.

2.2. Methodology

We study the behavior of returns from the two time intervals mentioned before:

- from 15t to 9t November;
- from 4t to 9t November.

2.2.1. Identification of the abnormal returns between 1st and 9t November
We use two time intervals:

- NOVio thatis composed by the days between 1stand 9t November;
- R_NOVisthatincludes all the days of a year excluding those from NOV 1.

Corresponding to NOV1 o time interval, we define a dummy variable (D_NOV1_o,t) with the formula:

1, ifthe trading day t belongs to the NOV, 4

D_NOV, g, = time interval

0, otherwise

In our attempt to identify the abnormal returns from the NOV1 o time interval, we employ an OLS model

with the equation:

Tie = Mo+ g XD_NOV; op + XL, & X1y i+ & (2)

where:

- Mois a coefficient that reflects the average returns during the R_NOV1_otime interval;

- Wi is a coefficient associated to the dummy variable D_NOV1o,: that expresses the difference between

the average of returns from the two time intervals: NOV1 9 and R_NOV1 g;
- &iisa coefficient associated to the i lagged value of the dependent variable;

- nis the number of the lagged value of rj:, chosen by Akaike (1974) Information Criterion;

- ecexpresses the error term (the values of residuals) that is supposed to be homoscedastic; if Breusch -
Pagan (1979) and White (1980) tests identified the heteroskedasticity of the error term, we apply the

White (1980) methodology.

2.2.2. Identification of the abnormal returns between 4t and 8t November

We use a methodology that is quite similar to the previous one. The two time intervals employed are:

NOV4 g that is composed by the days between 4t and 8t November;
- R_NOV4gthatincludes all the days of a year excluding those from NOV4s.

For the first time interval we associate a dummy variable (D_NOV4_s,:) with the formula:

1, ifthe trading day t belongs to the NOV, g
D_NOV, g, = time interval

0, otherwise

The OLS model has the equation:

Tie =Vo+ Vi XD_NOV, g + 201 & X1y + & (3)

where:

- vois a coefficient that reflects the average returns during the R_NOV4 g time interval;
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- viis a coefficient associated to the dummy variable D_NOV1_o,: that expresses the difference between
the average of returns from the two time intervals: NOV4_g and R_NOV4_s;
- &, n, and echave the same significances as in previous equation.

4. Empirical Results
3.1. Results for the first subsample
The Table 3 gives us the results of the regressions associated to the NOV1 o time interval. We obtained,

for all four indexes, significant positive values of the p1 coefficient.

Table 3. Coefficients of OLS models associated to the NOV1 o time interval in the case of first

subsample
Index S&P 500 DJIA NASDAQ Russell 2000
0.03190 0.0330* 0.0243 0.0305
Ho (0.0120) (0.0195) (0.0299) (0.0213)
0.2123** 0.2342%* 0.3697%* 0.2719%*
W (0.1007) (0.0993) (0.1273) (0.1183)
0.0477%* 0.0741%*
b X X (0.0220) (0.0215)
White's test for 2.625 1.973 212.886%+* 118.171%+
heteroskedasticity
Breusch-Pagan test for 7.307%% 6.422%* 171.374%% 93.356*
heteroskedasticity ' ' ) '

Notes: Standard errors are within parentheses; ***, ** and * mean significant at 0.01, 0.05 and 0.1 levels, respectively; the standard errors
and p-values were corrected by the White (1980) methodology.

For the regressions associated to the NOV4_s time interval, we found a significant value of the vi
coefficient, under a 0.05 level, in the case of DJIA index (Table 4). We also obtained a significant value of the v1
coefficient in the case of S&P 500 index, but only for a 0.1 level.

Table 4. Coefficients of OLS models associated to the NOV4 s time interval in the case of first

subsample
Index S&P 500 DJIA NASDAQ Russell 2000
Vo 0.0342* 0.0348* 0.03144 0.0361*
(0.0198) (0.0193) (0.0297) (0.0213)
i 0.2152* 0.2957** 0.1842 0.1136
(0.1284) (0.1300) (0.2023) (0.1420)
0.0495** 0.0762***
b X X (0.0220) (0.0214)
White's test for ook ok
heteroskedasticity 1.569 1.374 211.646 118.390
Breusch-Pagan test for 4.369% 4.478% 167.877%% 94,731 %%
heteroskedasticity

Notes: Standard errors are within parentheses; ***, ** and * mean significant at 0.01, 0.05 and 0.1 levels, respectively; the standard errors
and p-values were corrected by the White (1980) methodology.

3.2. Results for the second subsample
The results of the regressions associated to the NOV1 o time interval are reported in the Table 5. We

found no significant value of the p1 coefficient.

Table 5. Coefficients of OLS models associated to the NOV1 o time interval in the case of second

subsample
Index S&P 500 DJIA NASDAQ Russell 2000
0.0120 0.0137 0.0371 0.0206
Ho (0.0273) (0.0249) (0.0304) (0.0366)
-0.0607 -0.0470 -0.2049 -0.1786
H (0.2196) (0.1909) (0.2456) (0.2324)
-0.07071%** -0.0827***
&1 X X
(0.2196) (0.0250)
White's test for ok ook
heteroskedasticity 95.576 102.368 0.915 0.350
Breusch-Pagan test for | ) 7 g4 gurs 196.011%+ 4.020% 1.256
heteroskedasticity
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Notes: Standard errors are within parentheses; *** and ** mean significant at 0.01 and 0.05 levels, respectively; the standard errors and

p-values were corrected by the White (1980) methodology when residuals displayed heteroskedasticity.

For the OLS models associated to the NOV4 s time interval, the results indicate that values of the v1

coefficient are not significant (Table 6).

Table 6. Coefficients of OLS models associated to the NOV4 s time interval in the case of second

subsample
Index S&P 500 DJIA NASDAQ Russell 2000
v 0.0106 0.0122 0.0355 0.0184
0 (0.0272) (0.0249) (0.03043) (0.0364)
v 0.0085 0.0417 -0.2375 -0.1540
! (0.2826) (0.2302) (0.2618) (0.3012)
-0.0708*** -0.0840***
&1 X X
(0.0253) (0.0250)
White's test for 95.741*** -
heteroskedasticity 102.736 1.039 0.053
Breusch-Pagan testfor | ;¢ gggu | 199 g5+ 4.568** 0.188
heteroskedasticity

Notes: Standard errors are within parentheses; *** and ** mean significant at 0.01 and 0.05 levels, respectively; the standard errors and

p-values were corrected by the White (1980) methodology when residuals displayed heteroskedasticity.

3.3. Results for the third subsample

The Table 7 displays the results of OLS models associated to the NOV1 9 time interval. We obtained
significant positive values of the p1 coefficient, under a 0.05 level, for three indexes (S&P 500, DJIA and Russell
2000). For the NASDAQ index we also found a significant value of the v1 coefficient, but only for a 0.1 level.

Table 7. Coefficients of OLS models associated to the NOV1 o time interval in the case of third

subsample
Index S&P 500 DJIA NASDAQ Russell 2000
0.0450** 0.0285 0.0660** 0.0181
Ho (0.0216) (0.0238) (0.0274) (0.0316)
0.3419** 0.4133%** 0.3214* 0.4424*
H (0.1506) (0.1467) (0.1840) (0.1947)
-0.0542%* -0.0652%+*
& (0.0246) X (0.0246) x
White's test for
heteroskedasticity 357.282%%* 0.159 295.340%** 0.044
Breusch-Pagan test for 80.364%%* 2,071 19.336** 0.288
heteroskedasticity

Notes: Standard errors are within parentheses; ***, ** and * mean significant at 0.01, 0.05 and 0.1 levels, respectively; the standard errors
and p-values were corrected by the White (1980) methodology when residuals displayed heteroskedasticity.

The results of OLS models associated to the NOV4 g time interval are presented in the Table 8. For three
indexes (S&P 500, DJIA and NASDAQ) the values of vi coefficient are, under a 0.05 level, significantly positive.
We also obtained a significant value of the vi1 coefficient in the case of Russell 2000, but only for a 0.1 level.

Table 8. Coefficients of OLS models associated to the NOV4 s time interval in the case of third

subsample
Index S&P 500 DJIA NASDAQ Russell 2000
Vo 0.05061** 0.0314 0.0643** 0.0232
(0.0215) (0.0237) (0.0272) (0.0315)
- 0.5842%** 0.5655%** 0.6944*** 0.4686*
(0.1588) (0.1996) (0.2177) (0.2650)
-0.0539** -0.0643%**
& (0.0245) X (0.0246) X
White's test for
heteroskedasticity 355.952%** 0.216 293.916*** 0.114
Brﬁ“SCh'Pagan test for 81.398%** 2.810* 20.878%* 0.753
eteroskedasticity

Notes: Standard errors are within parentheses; ***, ** and * mean significant at 0.01, 0.05 and 0.1 levels, respectively; the standard errors
and p-values were corrected by the White (1980) methodology when residuals displayed heteroskedasticity.
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4. Conclusions

The results of this investigation could be interpreted as evidence of a significant impact of the
Halloween strategies on US capital market. However, it can be rejected the hypothesis that abnormal high
returns from the first part of November were caused by other factors, especially those specific to intra-month
calendar anomalies: news announcements regarding companies’ results or macroeconomic indicators
scheduled to be released in that time interval, the standardization of various payments, the tax-loss selling and
the window dressing practices, etc. (Dyl, 1978; Bhabra et al., 1999; Jacobs & Levy, 1988; Brauer & Chang., 1990;
Ogden, 1990; Lakonishok et al., 1991; Ogden, 1994; Gibson et al., 2000; Nofsinger, 2001; Ryan & Taffler, 2004;
Gerlach, 2007; Nikkinen et al., 2007; Neuhierl et al.,, 2013).

The empirical results also suggested that stock returns from the two time intervals were sensitive to
changes in the context that occurred during the three periods of investigation. Between January 1995 and
December 2006, when the financial markets experienced a relatively quiet context, all four indexes displayed
abnormal high returns in the NOV1 o time interval. In the same period, we found abnormal high returns in the
NOV4 s time interval only for the Dow Jones Industrial Average index.

The Global Financial Crisis, the Big Recession and the European Debt Crisis generated pessimism among
investors between January 2007 and December 2015 (Bosworth & Flaaen, 2009; Hurd & Rohwedder, 2010;
Wyplosz, 2010; Garcia, 2013; Ameur et al., 2024). In this context, we found no abnormal return for the two time
intervals. It was documented that many forms of seasonality weakened or disappeared in periods of crisis
(Holden et al., 2005; Hui, 2005; Lu et al,, 2015; Vasileiou & Samitas, 2015).

Between January 2016 and December 2024 there were events, such as the changes in Federal
Reserve’s monetary policy, the COVID 19 pandemic or the Ukraine-Russia war, that generated complex
evolutions of the US capital market (Baker et al, 2020; Benmelech & Tzur-Ilan, 2020; Wei & Han, 2021;
Boungou & Yatié, 2022; Cortes et al., 2022; D’Amico & King, 2023; Chowdhury & Khan, 2024). In this period
two indexes (Standard & Poor's 500 and Dow Jones Industrial Average) had abnormal high returns for both
time intervals. The Russell 2000 index, which reflects the small companies’ performances, displayed abnormal
high returns for NOV1 9 but not for NOV4_g. This fact could be explained by the impact of the firm size on the
stock returns’ seasonality (Keim, 1983; Schwert, 1983; Chen & Jindra, 2010). In the case of NASDAQ Composite
index we found abnormal high returns for NOV4 g but not for NOV1_o. In the last years, the evolution of this index
was influenced by the major transformations from the technology sector (Drabik, 2021; Teti & Maroni, 2021;
Kumar, 2021; Demmler & Fernandez, 2024). Some investors could hesitate to purchase stocks in the first days
of a month when the prices could be high because of the TOM Effect and when the uncertainty about monetary
policy could be significant.
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